메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김병희 (서울대학교) 장병탁 (서울대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제24권 제4호
발행연도
2014.8
수록면
443 - 449 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
사람의 영화에 대한 선호도에는 개인의 특성과 영화의 속성을 기반으로 하는 다양한 요인이 연관되어 있다. 영화 추천을 위한 사용자-영화-선호도 연관 관계의 분석 기법으로서, 다중 개념 탐색 기법의 특성을 지닌 infinite relational model (IRM)의 활용 가능성을 확인하고, 이를 기초로 영화 선호 유형에 따른 사용자-영화 군집을 탐색한다. 별점으로 표현되는 명시적인 선호도 데이터에 영화 컨텐츠 관련 메타데이터를 추가하여 학습 데이터를 구성하고, 이에 IRM을 적용하여 공군집화(co-clustering)를 수행한 결과, 해석 가능한 다양한 명시적 연관 관계를 발견하였다. 공군집화 결과를 기초로 개인화 추천에서의 다양한 활용 방안을 논의한다.

목차

요약
Abstract
1. 서론
2. IRM을 이용한 공군집화
3. 공군집화 기반의 연관 관계 개념망 구성
4. 공군집화 실험 및 연관 관계 탐색
5. 연관 관계 개념망 기반 추천 방안
6. 결론
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-004-002796671