메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
홍진성 (국민대학교) 김남규 (국민대학교) 이상원 (원광대학교)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제20권 제3호
발행연도
2014.9
수록면
77 - 92 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
텍스트에 대한 사용자의 접근성을 향상시키기 위해, 이들 문서는 정해진 기준에 따라 카테고리로 분류되어 제공되고 있다. 과거에는 카테고리 분류 작업이 수작업으로 수행되었지만, 문서 작성자에게 분류를 맡기는 경우 분류 정확성을 보장할 수 없고 관리자가 모든 분류를 담당하는 경우 많은 시간과 비용이 소요된다는 어려움이 있었다. 이러한 한계를 극복하기 위해 카테고리를 자동으로 식별할 수 있는 문서 분류 기법에 대한 연구가 활발하게 수행되었다. 하지만 대부분의 문서 분류 기법은 각 문서가 하나의 카테고리에만 속하는 경우를 가정하고 있기 때문에, 하나의 문서가 다양한 주제를 갖는 실제 상황과 부합하지 않는다는 한계를 갖는다. 이를 보완하기 위해 최근 문서의 다중 카테고리 식별을 위한 연구가 일부 수행되었으나, 이들 연구는 대부분 이미 다중 카테고리가 부여되어 있는 문서에 대한 학습을 통해 분류 규칙을 생성하므로 단일 카테고리만 부여되어 있는 기존 문서의 다중 카테고리 식별에는 적용할 수 없다는 제약을 갖는다. 따라서 본 연구에서는 이러한 제약을 극복하기 위해, 카테고리, 토픽, 문서간 관계 분석을 통해 단일 카테고리를 갖는 문서로부터 추가 주제를 발굴하여 이를 다중 카테고리로 자동 확장시킬 수 있는 방법론을 제안하였다. 실험 결과 원 카테고리가 식별된 총24,000건의 문서 중 23,089건에 대해 카테고리를 확장시킬 수 있었다. 또한 정확도 분석에서 카테고리의 특성에 따라 카테고리 분류 정확도가 상이하게 나타나는 현상을 발견하였다. 본 연구는 단일 카테고리로 분류된 문서에 대해 다중 카테고리를 추가로 식별하여 부여함으로써, 규칙 학습 과정에서 다중 카테고리가 부여된 문서를 필요로 하는 기존 다중 카테고리 문서 분류 알고리즘의 활용성을 매우 향상시킬 수 있을 것으로 기대한다.

목차

1. 서론
2. 관련연구
3. 복합주제 문서의 다중 카테고리 자동식별 방법론
4. 실험 및 결과
5. 결론
참고문헌(References)
Abstract

참고문헌 (24)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-003-002789735