본 연구에서는 마이크로 탄소 브러쉬 하전부와 평판형 금속 집진부로 구성된 저전력 소비형 2단형 전기집진기를 개발하였고, 특히 인체 위해성이 높은 0.3㎛급의 미세한 오일 미스트에 대한 인가전압 및 소비전력별 집진효율 특성을 실험연구를 통해 고찰하였다. 하전부의 인가전압에 따른 단위 입자당 하전율과 입경별 집진효율을 측정함과 동시에 이론에 근거한 계산값과 비교해 보았으며, 9 주 동안의 장시간 운전을 통해 지속적으로 포집된 오일 미스트에 의한 전기집진기의 성능을 열유체역학적인 관점에서 변화를 조사하였다.
A two-stage electrostatic precipitator (ESP) using a carbon brush charger and a plate-plate parallel aluminum collector was developed and its application for removal of oil mist aerosols was investigated. Charge number per particle and particle collection efficiency at different applied voltage to the carbon brush charger were measured and compared to those obtained by theoretical calculations. A long-term operation of the ESP during 9 weeks was also performed to evaluate its performance durability for oil mists. Average charge number per mist particle increased with the applied voltage to the charger, and thus the collection efficiency of the mist particles also increased overall at the particle size range of 0.26 - 3 mm. The tendencies of the average charge number per particle and particle collection efficiency obtained from theoretical calculations were considerably consistent with those of the experimental results. Particle collection efficiency of ~99 % at 0.3 mm could be achieved by power consumption of only 0.0033 W/(m3/h) at the face velocity of 1 m/s and its collection performance maintained stably during every 8 hr operation per day for 9 weeks with little increase of pressure drop.