메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hyejeong Lee (Ewha Womans University) Hyokyung Bahn (Ewha Womans University) Kang G. Shin (The University of Michigan)
저널정보
Korean Institute of Information Scientists and Engineers Journal of Computing Science and Engineering Journal of Computing Science and Engineering Vol.8 No.3
발행연도
2014.9
수록면
157 - 172 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Contemporary embedded systems often use NAND flash memory instead of hard disks as their swap space of virtual memory. Since the read/write characteristics of NAND flash memory are very different from those of hard disks, an efficient page replacement algorithm is needed for this environment. Our analysis shows that temporal locality is dominant in virtual memory references but that is not the case for write references, when the read and write references are monitored separately. Based on this observation, we present a new page replacement algorithm that uses different strategies for read and write operations in predicting the re-reference likelihood of pages. For read operations, only temporal locality is used; but for write operations, both write frequency and temporal locality are used. The algorithm logically partitions the memory space into read and write areas to keep track of their reference patterns precisely, and then dynamically adjusts their size based on their reference patterns and I/O costs. Without requiring any external parameter to tune, the proposed algorithm outperforms CLOCK, CAR, and CFLRU by 20%?66%. It also supports optimized implementations for virtual memory systems.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. RELATED WORK
Ⅲ. PAGE REFERENCES IN VIRTUAL MEMORY
Ⅳ. A NEW PAGE REPLACEMENT ALGORITHM
Ⅴ. PERFORMANCE EVALUATION
Ⅵ. REALIZATION IN REAL SYSTEM ARCHITECTURES
Ⅶ. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-560-002699374