메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최지연 (과학기술연합대학원대학교) 김희석 (한국과학기술정보연구원) 김규일 (한국과학기술정보연구원) 박학수 (한국과학기술정보연구원) 송중석 (한국과학기술정보연구원)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제24권 제5호
발행연도
2014.10
수록면
897 - 909 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
인터넷이 지속적으로 발달하면서 이에 따른 부작용으로 사이버 해킹 공격 또한 지능적인 공격으로 진화하고 있다. 해킹 공격의 도구로 사용되는 악성코드는 공격자들이 자동 제작 툴을 이용해 손쉽게 악성코드를 생성할 수 있기 때문에 악성코드의 수가 급증하고 있다. 그러나 수많은 악성코드를 모두 분석하기에는 많은 시간과 노력이 요구됨에 따라 신·변종 악성코드에 대한 별도의 분류가 필요한 상황이다. 이에 따라 신·변종 악성코드를 분류하는 다양한 연구들이 등장하고 있으며, 해당 연구들은 악성코드 분석을 통해 악성 행위를 나타내는 다양한 정보를 추출하고 이를 악성코드를 대표하는 특징으로 정의하여 악성코드를 분류한다. 그 중, 대부분이 API 함수와 API 함수로부터 추출한 특정 길이의 API 시퀀스를 이용하여 악성코드를 분류하고 있다. 그러나 API 시퀀스의 길이는 분류의 정확성에 영향을 미치기 때문에 적합한 API 시퀀스의 길이를 선택하는 것이 매우 중요하다. 따라서 본 논문은 특정 길이에 한정하지 않고, 다양한 길이의 API 시퀀스를 생성 및 조합하여 악성코드 분류의 정확성을 향상시키기 위한 최적의 API 시퀀스 및 조합을 찾는 방법론을 제안한다.

목차

요약
ABSTRACT
I. 서론
II. 관련 연구
III. 방법론
IV. 실험 및 결과
V. 결론
References

참고문헌 (23)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-560-002693998