메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박상민 (강원대학교) 엄규리 (강원대학교) 김상용 (한국생산기술연구원) 정용섭 (전북대학교) 이도훈 (한국생산기술연구원) 전계택 (강원대학교)
저널정보
한국생물공학회 KSBB Journal KSBB Journal 제29권 제3호
발행연도
2014.6
수록면
155 - 164 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Succinic acid, a representative biomass-derived platform chemical, is a major fermentation product of Actinobacillus succinogenes. It is well known that carbon dioxide is consumed during the succinate fermentation, but the biochemical mechanism behind this phenomenon is not yet understood well. In this study, it was found that the addition of carbonic anhydrase (CA)s into media significantly enhances the succinic acid production by A. succinogenes during the fermentation supplied with carbon dioxide. It is likely that the (bi) carbonate produced by the CA activity from gaseous carbon dioxide is favoured by A. succinogenes for consumption and utilization. Therefore, the MgCO₃ requirement could be significantly reduced without compromising the succinate productivity. Furthermore, because of too high price of the commercial carbonic anhydrase, it was undertaken to economically overproduce a cyanobacterial carbonic anhydrase by the use of a recombinant Pichia pastoris. An expression vector system was constructed with the carbonic anhydrase gene PCR-cloned from Cyanobacterium Synechocystis sp., and introduced into P. pastoris for fermentation studies. About 95.9 g/L of succinic acid was produced in the production medium with 30 ppm of carbonic anhydrase, approximately 2 fold higher productivity compared to the parallel process with no supplementation of the enzyme. It is expected that this method can provide a valuable way of overcoming inefficiencies inherent in gas supply during CO₂-based bioprocesses like succinic acid fermentation.

목차

Abstract
1. INTRODUCTION
2. MATERIALS AND METHOD
3. RESULTS AND DISCUSSION
4. CONCLUSION
REFERENCES

참고문헌 (38)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-400-002705412