메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최석재 (Kyung Hee University) 권오병 (Kyung Hee University)
저널정보
한국전자거래학회 한국전자거래학회지 한국전자거래학회지 제19권 제4호
발행연도
2014.11
수록면
1 - 19 (19page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
빅데이터 내에 존재하는 감정 정보를 추출하여 사용자들이 특정 대상에 대하여 갖고 있는 인식이 어떠한지를 파악하고자 하는 노력이 활발히 이루어지고 있다. 상품, 영화, 그리고 사회적 이슈 등에 대한 문장을 분석하여 사람들이 해당 주제에 어떠한 견해를 가지고 있는지를 분석하고 측정하여 구체적인 선호도를 알아내는 것이다. 문장에서 드러나는 감정 정도를 얻기 위해서는 감정어휘의 목록과 정도값을 제시할 수 있는 감정어휘사전이 필요하므로 본 연구에서는 감정어휘를 발견하는 방법과 이들의 정도값을 결정하는 문제를 다룬다. 기본적인 방법은 기초 감정어휘의 목록 수집과 이들의 정도값은 선행연구 결과와 직접 설문 방식을 이용하고, 확장된 목록의 수집과 정도값은 사전의 표제어 설명부(glosses)를 이용해 추론하는 것이다. 그 결과 발견된 감정어휘는 전형성을 띠고 있는 기본형 감정어휘, 기본형 감정어휘의 gloss에 사용된 확장형 1단계 1층위 감정어휘, 비 감정어휘 중 gloss에 기본형 또는 확장형 감정어휘를 가지고 있는 확장형 2단계 1층위 감정어휘, gloss의 gloss에 기본형 또는 확장형 감정어휘가 사용된 확장형 2단계 2층위 감정어휘의 네 종류로 나뉜다. 그리고 확장형 감정어휘의 정도값은 기본형 감정어휘의 정도값을 기초로 문형의 가중치와 강조승수를 적용하여 얻었다. 실험 결과 AND, OR 문형은 내포된 어휘의 감정 정도값을 평균 내는 가중치를, Multiply 문형은 정도 부사어의 종류에 따라 1.2~1.5의 가중치를 갖는 것으로 파악되었다. 또한 NOT 문형은 사용된 어휘의 감정 정도를 일정 정도로 낮추어 역전시키는 것으로 추정된다. 또한 확장형 어휘에 적용되는 강조승수는 1층위에서 2, 2층위에서 3을 갖는 것으로 예상된다.

목차

초록
ABSTRACT
1. 서론
2. 관련 연구
3. 감정어휘의 선정
4. 감정 정도값 계산
5. 결론
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-560-002883685