메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Han,Joong-hee (University of Seoul) Liu, Zhizhao (The Hong Kong Polytechnic University) Kwon, Jay Hyoun (University of Seoul)
저널정보
한국측량학회 한국측량학회지 한국측량학회지 제32권 제3호
발행연도
2014.6
수록면
233 - 244 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Precise Point Positioning (PPP) is an increasingly recognized precisely the GPS/GNSS positioning technique. In order to improve the accuracy of PPP, the error sources in PPP measurements should be reduced as much as possible and the ambiguities should be correctly resolved. The correct ambiguity resolution requires a careful control of residual errors that are normally categorized into random and systematic errors. To understand effects from two categorized errors on the PPP ambiguity resolution, those two GPS datasets are simulated by generating in locations in South Korea (denoted as SUWN) and Hong Kong (PolyU). Both simulation cases are studied for each dataset; the first case is that all the satellites are affected by systematic and random errors, and the second case is that only a few satellites are affected. In the first case with random errors only, when the magnitude of random errors is increased, L1 ambiguities have a much higher chance to be incorrectly fixed. However, the size of ambiguity error is not exactly proportional to the magnitude of random error. Satellite geometry has more impacts on the L1 ambiguity resolution than the magnitude of random errors. In the first case when all the satellites have both random and systematic errors, the accuracy of fixed ambiguities is considerably affected by the systematic error. A pseudorange systematic error of 5 cm is the much more detrimental to ambiguity resolutions than carrier phase systematic error of 2 mm. In the 2nd case when only a portion of satellites have systematic and random errors, the L1 ambiguity resolution in PPP can be still corrected. The number of allowable satellites varies from stations to stations, depending on the geometry of satellites.
Through extensive simulation tests under different schemes, this paper sheds light on how the PPP ambiguity resolution (more precisely L1 ambiguity resolution) is affected by the characteristics of the residual errors in PPP observations. The numerical examples recall the PPP data analysts that how accurate the error correction models must achieve in order to get all the ambiguities resolved correctly.

목차

Abstract
1. Introduction
2. GPS Data Simulation and Random and Systematic Error Generation
3. PPP Model and Ambiguity Fixing
4. Numerical Result and Analysis
5. Conclusions
References

참고문헌 (19)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-530-002847043