메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이상연 (충북대학교) 이건명 (충북대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제24권 제6호
발행연도
2014.12
수록면
640 - 645 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
인터넷 상에서 많은 사람들은 사용자 간의 의사소통과 정보 공유, 사회적 관계를 생성하기 위한 방법으로 소셜 네트워크 서비스를 이용한다. 그 중 대표적인 트위터는 하루에 수백만 건의 소셜 데이터가 발생하기 때문에 수집되고 있는 데이터의 양이 엄청나다. 이 방대한 양의 데이터로부터 의미 있는 정보를 추출하는 소셜 마이닝이 집중적으로 연구되고 있다. 트위터는 일반적으로 유용한 정보 혹은 공유하고자 하는 내용을 팔로잉-팔로워 관계를 이용해 쉽게 전달하고 리트윗할 수 있다. 소셜 미디어에서 트윗 데이터에 대한 토픽 모델링은 이슈를 추적하기 위한 좋은 도구이다. 짧은 텍스트 기반인 트윗데이터의 제한점을 극복하기 위해, 사용자를 노드로 사용자간 댓글과 리트윗 메시지의 여부를 간선으로 하는 그래프 구조를 갖는 댓글 그래프의 개념을 소개한다. 토픽 모델링의 대표적인 방법인 LDA 토픽 모델이 짧은 텍스트 데이터에 대해 비효율적인 것을 보완하기 위한 방법으로, 이 논문에서는 짧은 문서의 수를 줄이고 마이닝 결과의 질을 향상시키기 위한 댓글 그래프를 사용하는 토픽 모델링 방법을 소개한다. 제안한 모델은 토픽 모델링 방법으로 LDA 모델을 사용하였으며, 7일간 수집한 트윗 데이터에 대한 실험 결과를 보인다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 댓글 그래프 기반 소셜 마이닝 기법
4. 구현 및 실험환경
5. 결론
References

참고문헌 (11)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-028-001004321