메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Qiang Song (Atlanta Forecasting Systems)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems 제13권 제4호
발행연도
2014.12
수록면
357 - 368 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Since its birth in 1993, fuzzy time series have seen different classes of models designed and applied, such as fuzzy logic relation and rule-based models. These models have both advantages and disadvantages. The major drawbacks with these two classes of models are the difficulties encountered in identification and analysis of the model. Therefore, there is a strong need to explore new alternatives and this is the objective of this paper. By transforming a fuzzy number to a real number via integrating the inverse of the membership function, new autoregressive models can be developed to fit the observation values of a fuzzy time series. With the new models, the issues of model identification and parameter estimation can be addressed; and trends, seasonalities and multivariate fuzzy time series could also be modeled with ease. In addition, asymptotic behaviors of fuzzy time series can be inspected by means of characteristic equations.

목차

ABSTRACT
1. INTRODUCTION
2. LITERATURE REVIEW
3. MAIN RESULTS
4. CONCLUSIONS
REFERENCES

참고문헌 (30)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-530-000964018