메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
YoungSu Yun (Chosun University) Hye Jin Kim (Chosun University) Yoon Yong Hwang (Chosun University) Lin Lin (Dalian University of Technology)
저널정보
한국산업정보학회 한국산업정보학회 학술대회논문집 2014 The International Industrial Information Systems Conference
발행연도
2014.1
수록면
49 - 53 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
In this paper, we compare regionally distributed and centralized reverse logistics networks using genetic algorithm (GA) approach. Reverse logistics (RL) networks usually consist of customers, collection centers, remanufacturing centers, redistribution centers, and secondary markets at each stage. For the regionally distributed reverse logistics (DRL) network, the used products from all customers are sent to regionally distributed integration centers, which performs the functions of collection center, remanufacturing center, and redistribution center simultaneously, and after treating them in each integration center, they are sent to regionally distributed secondary markets. For the centralized reverse logistics (CRL) networks, the used products from all customers are sent to a centralized integration center, after treating them in it, they are sent to a centralized secondary market. The mathematical models for representing the DRL and CRL networks are proposed and they are solved in a GA approach. In numerical examples, various measures of performance are presented to compare the efficiency of the DRL and CRL networks.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. DRL AND CRL NETWORKS
Ⅲ. MATHEMATICAL PORMULATION
Ⅳ. GA APPROACHES
Ⅴ. NUMERICAL EXAMPLES
Ⅵ. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-530-000944496