메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
S. Nalini (Velammal Institute of Technology) K. Sandhya (Velammal Institute of Technology) P. Ganesh Kumar (Anna University)
저널정보
한국산업정보학회 한국산업정보학회 학술대회논문집 2014 The International Industrial Information Systems Conference
발행연도
2014.1
수록면
251 - 256 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Posts in social networking sites are informal, personal writings that people post on their own blog or sites. Nowadays, blogging in Social Networks are an important online activity. With the rapid growth of blogs in Social Network, their value as an important source of information is increasing. A large amount of research work has been devoted to blogs in the Natural Language Processing (NLP) and other communities. There are also many commercial companies that exploit information in blogs to provide value-added services, e.g. search, topic tracking, and sentiment analysis of people’s opinions on products and services. The goal of our system is to identify author gender of posts in social networks coming from a wide variety of source. The dataset used is from the popular social network, Twitter. Using the parts of speech of the dataset the gender of the site user is found. Empirical evaluation using a real-life blog data set shows that these two techniques improve the classification accuracy of the current state-of the-art methods significantly.

목차

ABSTRACT
Ⅰ. INTRODUCTION
Ⅱ. LITERATURE SURVEY
Ⅲ. PROPOSED SYSTEM
Ⅳ. IMPLEMENTATION
Ⅴ. EXPERIMENTS AND RESULTS
Ⅵ. CONCLUSION AND FUTURE WORK
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-530-000944936