메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Taras Maksymyuk (Lviv Polytechnic National University) Stepan Dumych (Lviv Polytechnic National University) Olena Krasko (Lviv Polytechnic National University) Mykola Kaidan (Lviv Polytechnic National University) Bohdan Strykhalyuk (Lviv Polytechnic National University)
저널정보
한국산학기술학회 SmartCR Smart Computing Review 제4권 제6호
발행연도
2014.12
수록면
470 - 480 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Next-generation optical networks are expected to provide tremendous capacity in order to support upcoming traffic increases. Many technologies are currently being developed for optical transport networks in order to increase throughput, improve energy efficiency and simplify network deployment. The most important problem in current optical networks is transmission of Internet protocol (IP) traffic. Regardless of the tremendous throughput with optical fibers, switching nodes still limit overall network performance. Recently, optical burst switching technology has been developed to overcome this problem. Optical burst switching combines the advantages of both circuit switching and packet switching networks and provides good performance in terms of packet data transmission. Even though optical burst switching networks provide a good mechanism for IP traffic transmission, overall performance is still limited because of access networks. Existing passive optical networks based on Ethernet technology are not fully compatible with optical burst switching, which results in bottlenecks on the border between transport and access networks. In this paper, we present a new method of optical wavelength time-division multiple access (OWTDMA) for passive optical networks. The proposed approach can provide outstanding scalability of network resources and can increase throughput of the optical access network. In addition, we propose implementation of OWTDMA in edge nodes of optical burst switching networks to eliminate bottlenecks between transport and access networks. Simulation results prove the advantage of our proposed approach.

목차

Abstract
Introduction
Architecture and Data Transmission Process in Optical Burst Switching Networks
Optical Wavelength Time-Division Multiple Access for Optical Burst Switching Networks
Simulation and Performance Analysis of Optical Burst Switching andWavelength Time-Division Multiple Access
Conclusions
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-505-001069588