메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
안길승 (한양대학교) 허선 (한양대학교)
저널정보
대한산업공학회 대한산업공학회지 대한산업공학회지 제41권 제1호
발행연도
2015.2
수록면
10 - 16 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this study, we suggest a method to predict probability distribution of a new customer’s degree of loyalty using C-CRF that reflects the RFM score and similarity to the neighbors of the customer. An RFM score prediction model is introduced to construct the first feature function of C-CRF. Integrating demographical similarity, purchasing characteristic similarity and purchase history similarity, we make a unified similarity variable to configure the second feature function of C-CRF. Then parameters of each feature function are estimated and we train our C-CRF model by training data set and suggest a probabilistic distribution to estimate a new customer’s degree of loyalty. An example is provided to illustrate our model.

목차

1. 서론
2. C-CRF
3. 신규 고객 등급 점수 예측 프로세스
4. 신규 고객 등급 점수 예측 예제
5. 결론
참고문헌

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-530-001083089