메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
류지열 (부경대학교) 곽민정 (평택대학교) 윤민 (부경대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제25권 제1호
발행연도
2015.2
수록면
15 - 21 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
커널에 대한 모수의 조절은 서포트 벡터 기계의 일반화 능력에 영향을 준다. 이와 같이 모수들의 적절한 값을 결정하는 것은 종종 어려운 작업이 된다. 서포트 벡터 회귀에서 이와 같은 모수들의 값을 결정하기 위한 부담은 앙상블 학습을 사용함으로써 감소시킬 수 있다. 그러나 대용량의 자료에 대한 문제에 직접적으로 적용하기에는 일반적으로 시간 소모적인 방법이다. 본 논문에서 서포트 벡터 회귀의 모수 조절에 대한 부담을 감소하기 위하여 원래 자료집합을 유한개의 부분집합으로 분해하는 방법을 제안하였다. 제안하는 방법은 대용량의 자료들인 경우와 특히 불균등 자료 집합에서 효율적임을 보일 것이다.

목차

요약
Abstract
1. 소개
2. 서포트 벡터 회귀
3. μ-SVR에서 모수조절을 위한 부스팅 방법
4. 대용량의 불균등 자료의 분류를 위한 앙상블 학습
5. 수치 예제들
6. 결론
References

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-028-001253291