메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국사회체육학회 한국사회체육학회지 한국사회체육학회지 제17권
발행연도
2002.5
수록면
879 - 887 (9page)
DOI
10.51979/KSSLS.2002.05.17.879

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper studied the relationship between annual salary and performance of the Korean professional basketball players. The annual salary of the basketball players as like other wage workers of many different jobs is determined by their ability of productivity at the play. The person having higher productivity is paid higher by the owners of the company. We collected data from the internet website of www.basketball2i.com which provides basic informations of the professional basketball. The mean, median, mode salary of players is 87,000,000 won, 70,000,000 won, and 45,000,000 won, respectively. These salaries of the basketball players are higher than the other popular professional sport, baseball, which have mean salary of 57,86,000 won and median salary of 45,000,000 won. The salary of basketball players is about 3∼4 times higher than the average salary of wage workers having 27,000,000 won. In general, the average performance of players are 215 scores, 61 rebounds, 56 assists, 19 steals, 29 turnovers, 65 fouls, and 29 games. We applied eight simple regression test to measure the effect of the eight independent variables to the dependent variable of salary. The eight independent variables are scores, rebounds, assists, steals, shot blocks, turnovers, fouls, and games and they have statistical significance. Then, we also used multiple regression analysis to test them when the variables control the other variables. The multiple regression analysis has some different results compared to simple regression analysis. The multiple regression analysis show that scores, assists, steals, and fouls are still statistically significant controlling the other variables.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0