메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Yongbin Gao (Chonbuk National University) Hyo Jong Lee (Chonbuk National University)
저널정보
대한전자공학회 대한전자공학회 학술대회 2014년도 대한전자공학회 정기총회 및 추계학술대회
발행연도
2014.11
수록면
392 - 395 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Face recognition has been widely investigated in the last decade. However, real world application for face recognition is still a challenge. Most of these face recognition algorithms are under controlled settings, such as limited viewpoint and illumination changes. In this paper, we focus on face recognition which tolerates large viewpoint change. A novel framework named Orientation based Scale Invariant Feature Transform (OSIFT) is proposed. OSIFT is an extension of SIFT algorithm. SIFT is a scale and rotation invariant algorithm, which is powerful for small viewpoint changes in face recognition, but it fails when large viewpoint change exists. To handle this problem, we propose to use Lucas-Kanade algorithm to generate different viewpoint face from a single frontal face. After that, SIFT is used to detect local features from these viewpoints, these SIFT features contain information of different viewpoint face, which can deal with the problem of face viewpoint change. Finally, our framework is compared with the SIFT algorithm and other similar solutions. Experiment results show our framework achieves better recognition accuracy than SIFT algorithm.

목차

Abstract
Ⅰ. Introduction
Ⅱ. OSIFT
Ⅲ. Results
Ⅳ. Conclusions
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-001270030