메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이용걸 (단국대학교) 최상일 (단국대학교)
저널정보
대한전자공학회 전자공학회논문지 전자공학회논문지 제52권 5호
발행연도
2015.5
수록면
115 - 123 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
점진 학습은 비교적 높은 얼굴 추적 성능을 보이지만, 환경적인 변화로 인해 추적에 오차가 발생하면 그 이후의 추적에 오차가 전파되어 추적 성능이 감소한다는 단점이 있다. 본 논문에서는, 다양한 변이 조건에서 강인하게 동작할 수 있는 선택적인 점진 학습 방법을 제안한다. 먼저, 개별 프레임에 대해 LBP(Local Binary Pattern) 특징을 추출하여 사용함으로써 조명 변이에 보다 강인하게 동작 할수 있고, Staggered Multi-Scale LBP를 사용하여 점진 학습에 사용할 패치(patch)를 선택하여 이전 프레임에서의 오차가 전파되는 것을 방지하였다. 실험을 통해, 제안한 방법이 조명 변이와 같은 환경적 변이가 존재하는 비디오 영상에 대해서도 기존의 추적 방법들보다 우수한 얼굴 추적 성능을 보이는 것을 확인할 수 있었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 제안 방법
Ⅳ. 실험
Ⅴ. 결론
REFERENCES

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-001592653