메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박영칠 (서울과학기술대학교)
저널정보
대한설비공학회 설비공학논문집 설비공학논문집 제27권 제6호
발행연도
2015.6
수록면
283 - 292 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A model of apartment heating load in a district heating system could be useful in the management and utilization of energy resources, since it could predict energy usage and so could assist in the efficient use of energy resources. The heating load in a district heating system varies in a highly nonlinear manner and is subject to many different factors, such as heating area, number of people living in that complex, and ambient temperature. Thus there are few published papers with accurate models of heating load, especially in domestic literature. This work is concerned with the modeling of apartment heating load in a district heating system in winter, using the reduced least square support vector machine (LS-SVM), and with the purpose of using the model to predict heating energy usage in domestic city area. We collected 23,856 pieces of data on heating energy usage over a 12-week period in winter, from 12 heat exchangers in five apartments. Half of the collected data were used to construct the heating load model, and the other half were used to test the model’s accuracy. The model was able to predict the heating energy usage pattern rather accurately. It could also estimate the usage of heating energy within of mean absolute percentage error. This implies that the model prediction accuracy needs to be improved further, but it still could be considered as an acceptable model if we consider the nonlinearity and uncertainty of apartment heating energy usage in a district heating system.

목차

Abstract
1. 서론
2. Reduced LS-SVM
3. 동절기 난방부하의 모델링
4. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-553-001581472