메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Ju Hyoung Mun (Ewha Womans University) Hyesook Lim (Ewha Womans University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.4 No.3
발행연도
2015.6
수록면
163 - 168 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Many IP address lookup approaches employ Bloom filters to obtain a high-speed search performance. Especially, it has been recently studied that the search performance of trie-based algorithms can be significantly improved by adding Bloom filters. In such algorithms, the number of trie accesses can be greatly reduced because Bloom filters can determine whether a node exists in a trie without actually accessing the trie. Bloom filters do not have false negatives but have false positives. False positives can lead to unnecessary trie accesses. The false positive rate must thus be reduced to enhance the performance of lookup algorithms applying Bloom filters. One important characteristic of trie-based algorithms is that all the ancestors of a node are also stored. The proposed algorithm utilizes this characteristic in reducing the false positive rate of a Bloom filter without increasing the size of the memory for the Bloom filter. When a Bloom filter produces a positive result for a node of a trie, we propose to check whether the ancestors of the node are also positives. Because Bloom filters have no false negatives, the negatives of any of the ancestors mean that the positive of the node is false. In other words, we propose to use more Bloom filter queries to reduce the false positive rate of a Bloom filter in trie-based algorithms. Simulation results show that querying one ancestor of a node can reduce the false positive rate by up to 67% with exactly the same architecture and the same memory requirement. The proposed approach can be applied to other trie-based algorithms employing Bloom filters.

목차

Abstract
1. Introduction
2. Related Work
3. The Proposed Algorithm
4. Performance Evaluation
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-001682629