메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박주영 (고려대학교) 지승현 (고려대학교) 성기훈 (고려대학교) 허성만 (고려대학교) 박경욱 (고려대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제25권 제4호
발행연도
2015.8
수록면
319 - 326 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근들어, 확률론적 최적제어(stochastic optimal control) 및 강화학습(reinforcement learning) 분야에서는 데이터를 활용하여 준최적 제어 전략을 찾는 문제를 위한 많은 연구 노력이 있어 왔다. 가치함수(value function) 기반 동적 계획법(dynamic programming)으로 최적제어기를 구하는 고전적인 이론은 확률론적 최적 제어 문제를 풀기위해 확고한 이론적 근거 아래 확립된바 있다. 하지만, 이러한 고전적 이론은 매우 간단한 경우에만 성공적으로 적용될 수 있다. 그러므로, 엄밀한 수학적 분석 대신에 상태 전이 및 보상 신호 값 등의 관련 데이터를 활용하여 준최적해를 구하고자 하는 데이터 기반 현대적 접근 방법들은 실용적인 응용분야에서 특히 매력적이다. 본 논문에서는 확률론적 최적제어 전략과 근사적 추론 및 기계학습 기반 데이터 처리 방법을 접목하는 방법론들을 고려한다. 그리고 이러한 고려를 통하여 얻어진 방법론들을 금융공학을 포함한 다양한 응용 분야에 적용하고 그들의 성능을 관찰해보도록 한다.

목차

요약
Abstract
1. 서론
2. 본론
3. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-028-001770099