메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이기배 (제주대학교) 이종현 (제주대학교) 배진호 (제주대학교) 이재일 (제주대학교)
저널정보
대한전자공학회 전자공학회논문지 전자공학회논문지 제52권 8호
발행연도
2015.8
수록면
117 - 125 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 ‘좌’, ‘우’방향 제어를 위해 취득된 EEG(Electroencephalogram) 신호 기반 분류 알고리즘과 EEG 센서, Labview, DAQ, Matlab, 주행로봇으로 구성된 방향 제어 시스템을 제안한다. 제안된 알고리즘은 DWT(Discrete Wavelet Transform) 로 추출된 주파수대역 정보를 특징으로 이용하며, Fishers core 를 이용하여 변별력이 높은 주파수 대역의 특징을 선별한다. 또한, SVM (Support Vector Machine) 을 이용하여 분류 성능이 최고가 되는 특징벡터의 조합을 제안하고, 잘못된 판정에 의한 오동작을 방지하기 위한 MLD (Maximum Likelihood Decision) 기반의 판정보류 알고리즘도 제안한다. 제안된 알고리즘에 의해 선택된 4개의 특징벡터는 국제 표준 전극 배치법에 따른 P8 채널의 d2(16-32Hz), d5(2-4Hz) 주파수 대역의 전압의 절대 값 평균과 표준편차이다. SVM 분류기로 실험한 결과 98.75%의 정확도와 1.25%의 오류율 성능을 보였다. 또한, 오류 확률 70%를 판정 보류로 규정할 경우, 제안된 알고리즘은 인식률 95.63%의 정확도와 오류율 0%을 보였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. EEG 신호 분류 알고리즘
Ⅲ. 실험 및 결과
Ⅳ. 결론
REFERENCES

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0