메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제16권 제2호
발행연도
2011.2
수록면
25 - 31 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
주성분 분석(PCA)은 차원 축소와 특징 추출을 위해 널리 사용되는 기법 중의 하나이지만 자승 오류의 사용으로 인해 잡음에 민감한 단점이 있다. 이러한 잡음 민감성을 개선하기 위해 다양한 방법이 소개되었고 그 중 improved robust fuzzy PCA(RF-PCA2)는 퍼지 소속도를 이용한 반복적 최적화 기법으로 다른 방법에 비해 우수한 성능을 보였다. 하지만 RF-PCA2 역시 국부적인 최적해에 빠질 수 있으며 그 원인 중 하나는 RF-PCA2 알고리듬이 소속도를 균일한 값으로 초기화시키기 때문이다. 또한 퍼지 소속도를 사용하고 있지만 여전히 목적함수가 자승 오류 최소화에 기초하고 있다는 사실도 그 원인이 된다. 이 논문에서는 RF-PCA2의 이러한 문제점을 개선한 RF-PCA3를 제안한다. 제안하는 알고리듬은 RF-PCA2의 목적 함수를 바탕으로 하고 있다. 여기에 PCA의 목적 함수를 추가하고 초기 소속도 값을 데이터의 분포로부터 계산함으로써 전역 최적해에 가까운 해를 얻을 수 있는 가능성을 높여준다. 이러한 사실들은 실험 결과를 통해 확인할 수 있다.

목차

등록된 정보가 없습니다.

참고문헌 (11)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0