메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제17권 제4호
발행연도
2012.4
수록면
83 - 90 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
대규모의 상품을 다루는 전자상거래 시스템에서 개인화된 추천은 필수적인 기능이 되고 있다. 대표적 추천 알고리즘인 협업필터링은 내용기반 추천에 비하여 뛰어난 추천성능을 제공해 주고 있으나, 희박성, 신규 아이템 문제(Cold-start), 확장성 등의 근본적인 한계를 갖고 있다. 본 연구에서는 추가적으로 협업필터링이 목표 대상자에 따라 비일관된 예측 능력의 차이를 보이는 추천 성능의 편차 문제를 제기하고자 한다. 추천성능의 편차는 기존의 Mean Absolute Error(MAE)에 의해서는 측정되기 어려우며 또한 정확도, 재현율 지표와도 독립적으로 평가되고 있다. 협업알고리즘의 정확한 성능평가를 위해서 본 연구에서는 MAE, MAE 편차, 정확도, 재현율을 포괄적으로 평가할 수 있는 확장 성능평가모델을 제안하고 이를 클러스터링 기반 협업필터링에 적용하여 성능을 비교 분석한다.

목차

등록된 정보가 없습니다.

참고문헌 (20)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0