메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제17권 제10호
발행연도
2012.10
수록면
145 - 154 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
현대 사회는 서구화된 식생활 패턴과 흡연, 비만 등의 원인으로 인해 심혈관계 질환들이 급증하고 있다. 특히, 급성심근경색은 심혈관계 질환으로 인한 사망의 대부분을 차지하고 있다. 이러한 추세에 따라 해외 선진국에서는 임상생리학적 오류를 줄이기 위해서 자국민의 데이터를 기반으로 급성심근경색의 발병 및 질병에 영향을 미치는 위험인자를 찾는 연구가 활발히 진행되고 있다. 하지만 한국인에 적합한 급성심근경색 예후 진단 예측 시스템이 미비한 실정이다. 따라서 이 논문에서는 KAMIR(Korea Acute Myocardial Infarction Registry) 데이터베이스에서 제공 받은 급성심근경색 환자의 예후 데이터를 기반으로 ST분절 급상승 심근경색 재발 환자들의 단기 사망률 예측모델을 찾고자 한다. 실험을 통해 로지스틱 회귀 분석에 의해 추출된 속성 집합을 적용하였을 때 기존의 원시 데이터 보다 높은 정확도를 얻을 수 있었으며, 인공신경망의 경우 다른 분류기법들보다 높은 성능을 보였다. 이를 통해 ST 분절 급상승 심근경색 재발 환자들의 단기 사망률을 예측함으로써 향후 고위험군 환자들의 관리에 도움을 줄 수 있을 것으로 기대한다.

목차

등록된 정보가 없습니다.

참고문헌 (21)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0