메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회 학술발표논문집 한국컴퓨터정보학회 하계학술대회 논문집 제18권 제2호
발행연도
2010.7
수록면
169 - 172 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 기존의 ISODATA 알고리즘을 네트워크 공격탐지에 더욱 적합하도록 개선하여 공격을 탐지하는 새로운 방법을 제안한다. 수많은 인터넷상의 트래픽 정보들을 군집화하여 유사도를 비교하는 방법을 통해 공격을 판단한다. 기본적인 절차는 송신자 IP와 Port, 수신자 IP와 Port 정보를 이용하여 송신자와 수신자 사이의 관계를 분석하고 그 특징 값들을 이용하여 개선된 군집화 알고리즘을 이용하여 군집화를 수행한다. 그리고 얻어진 패턴의 특징값을 인공신경망에 학습하여 공격유형을 분류하고 탐지하도록 한다. 기존의 공격탐지 방법과 비교했을 때, 계산양이 적고 속도가 빠르다는 장점이 있으며 제안하는 방법의 우수성을 실험을 통해 증명하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0