메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Guoqi Ma (University of Science and Technology of China) Linlin Qin (University of Science and Technology of China) Xinghua Liu (University of Science and Technology of China) Chun Shi (University of Science and Technology of China) Gang Wu (University of Science and Technology of China)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2015
발행연도
2015.10
수록면
1,064 - 1,069 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Greenhouse microclimate control system is a typical hybrid system, in which the discrete (or logical) variables and continuous variables interact. The existence of outside measurable but uncontrollable disturbance inputs including outside temperature, humidity, wind speed, solar radiation, and et al, makes the control problem of greenhouse microclimate a challenging one and some conventional control methods not applicable, which motivates us to investigate the prediction problem of disturbance inputs of greenhouse control system. First, grey prediction model GM (1, 1) and time series model ARIMA (p, d, q) are adopted to predict the outside humidity over the next four hours, respectively. Then, considering the nonstationary property of the humidity sequence, wavelet analysis theory is applied to decompose the humidity sequence into different scales in order to reduce the randomness of the original sequence. Furthermore, the low frequency signal and high frequency one are predicted by GM (1, 1) and time series model ARIMA (p, d, q), respectively. Finally, simulation studies are carried out to compare the three prediction methods.

목차

Abstract
1. INTRODUCTION
2. GREY PREDICTION MODEL GM (1, 1)
3. TIME SERIES MODEL
4. WAVELET TRANSFORM
5. SIMULATION
6. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-001918415