메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제11권 제1호
발행연도
2006.3
수록면
11 - 18 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
LAD(Logical Analysis of Data)는 Boolean-logic에 기반을 둔 데이터 마이닝 방법론이다. LAD에 의한 데이터 분석 시 중요한 과정은 데이터 집합에 숨겨진 구조적 정보를 패턴의 형식으로 발견해내는 패턴 생성 단계이다. 기존의 패턴 생성 방법은 열거법에 기반을 두고 있어 높은 차수의 패턴을 생성하는 것은 실질적으로 불가능하였다. 본 논문에서는 최적화에 기반을 둔 패턴 생성 방법론을 제안하고 혼합 정수선형 모형과 SCP(Set Covering Problem)의 두 가지 모형을 제안한다. 기계학습 분야에서 널리 쓰이는 데이터 집합에 대해 제안된 패턴 생성 방법을 이용한 분석 실험을 통하여 기존의 패턴 생성 방법으로는 생성될 수 없는 패턴을 쉽게 생성하는 효율성을 입증하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 기존 LAD의 패턴 생성 방법
Ⅲ. 최적화에 기반을 둔 패턴 생성 방법
Ⅳ. 실험 결과
Ⅴ. 결론
참고문헌
저자소개

참고문헌 (4)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0