메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
최근 유비쿼터스 컴퓨팅의 관심이 증대되면서, 방대하고 다양한 형태의 데이터에 대한 효율성과 효과성을 고려한 지식 탐사연구의 필요성이 요구된다. 공간 특성화 방법은 공간과 비공간 속성들을 고려하여 특성화 지식을 발견하는 방법으로, 기존의 특성화 방법을 확장하여 공간 영역에 대한 다양한 형태의 지식을 발견할 수 있다. 기존 공간 특성화기법에 대한 연구들은 다음과 같은 문제점을 가진다. 첫째, 기존의 연구는 탐사된 지식의 결과가 다각적인 공간 분석을 수행하지 못하는 문제점을 가진다. 둘째, 공간 탐색 시 사용자에 의해 미리 정해진 위치 영역만을 고려하여 탐색함으로 유용한 지식탐사를 보장하지 못하는 문제점을 가진다. 따라서 본 연구에서는 밀도 기반의 클러스터링이 적용된 새로운 공간 특성화기법을 제안한다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 밀도 기반 클러스터링을 이용한 공간 특성화 방법
Ⅳ. 공간 특성화 시스템의 구조 및 설계
Ⅴ. 실험 및 결과
Ⅵ. 결론
참고문헌
저자소개

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0