메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Daisuke Takeyasu (The Open University of Japan) Asami Shitara (Tax Corporation Arknet) Kazuhiro Takeyasu (Tokoha University)
저널정보
대한산업공학회 대한산업공학회 추계학술대회 논문집 2015년 대한산업공학회 추계학술대회 및 정기총회
발행연도
2015.11
수록면
3,174 - 3,181 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Intermittent data are often seen in industries. But it is rather difficult to make forecasting in general. In recent years, the needs for intermittent demand forecasting are increasing because of the constraints of strict Supply Chain Management. How to improve the forecasting accuracy is an important issue. There are many researches made on this. But there are rooms for improvement. In this paper, a new method for cumulative forecasting method is proposed. The data is cumulated and to this cumulated time series, the following method is applied to improve the forecasting accuracy. Theoretical solution of smoothing constant of ESM is calculated for both of the monthly trend removing data and the non monthly trend removing data. Then forecasting is executed on these data. The forecasting result is compared with those of the non-cumulative forecasting method. The new method shows that it is useful for the forecasting of intermittent demand data.

목차

Abstract
1. INTRODUCTION
2. DESCRIPTION OF ESM USING ARMA MODEL[2]
3. TREND REMOVAL METHOD[2]
4. MONTHLY RATIO[2]
5. FORECASTING THE PRODUCTION DATA
6. Conclusion
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-530-002022653