메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정영훈 (경북대학교)
저널정보
한국기계가공학회 한국기계가공학회지 한국기계가공학회지 제14권 제6호
발행연도
2015.12
수록면
1 - 6 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Tool condition monitoring plays one of the most important roles in the improvement of both machining quality and productivity. In this regard, various process signals and monitoring methods have been developed. However, most of the existing studies used cutting force or acoustic emission signals, which posed risks of interference with the machining system in dynamics, fixturing, and machining configuration. In this study, a feed motor current signal is used as a process signal representing process and tool states in tool breakage monitoring based on an adaptive autoregressive model and unsupervised neural network. From the experimental results using various cases of tool breakage, it is shown that the developed system can successfully detect tool breakage before two revolutions of the spindle after tool breakage.

목차

ABSTRACT
1. 서론
2. 공구파손 검출 시스템의 구성
3. 실험결과 및 고찰
4. 결론
REFERENCES

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-581-002133632