메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
배장성 (강원대학교) 이창기 (강원대학교)
저널정보
한국인지과학회 인지과학 인지과학 제26권 제4호
발행연도
2015.12
수록면
377 - 392 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
한국어 의미역 결정(Semantic Role Labeling)은 주로 기계학습에 의해 이루어지며 많은 말뭉치 자원을 필요로 한다. 그러나 한국어 의미역 결정 시스템에 사용되는 Korean PropBank는 의미역이 부착된 용언과 용언 격틀이 PropBank에 비해 각각 1/5, 1/2 수준에 불과하다. 따라서 본 논문에서는 한국어 의미역 결정 시스템을 위해 의미역이 부착된 용언과 용언 격틀을 확장하여 Korean PropBank를 확장 시키고자 한다. 대부분의 의미역 결정 시스템은 학습 도메인에 의존적이기 때문에 적용 도메인 변경에 따른 성능 하락이 나타날 수 있다. 본 논문에서는 기존의 학습 말뭉치와 적은 양의 새로운 학습 말뭉치를 활용하여 새로운 도메인에 대해 의미역 결정 시스템의 성능 하락을 최소화 할 수 있는 도메인 적응 기술을 Structural SVM(S-SVM)과 Deep Neural Network(DNN) 기반 한국어 의미역 결정 시스템에 적용하여 그 실효성을 알아보고자 한다.

목차

Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. Korean PropBank 확장
Ⅳ. 도메인 적응 기술 적용
Ⅴ. 결론
참고문헌
(Abstract)

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-051-002338941