메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
칼라 코렐로그램은 계산량이 많아지고 저장 공간이 커져서 검색하는 시간이 길어지므로 일반적으로 64*64 로 양자화 하여 사용되어지는데, 본 논문에서는 메디안 픽셀 특징에 공간정보를 이용하여 9*9 로 양자화 하였다. 기존 알고리즘의 경우 메디안 값이 중복되는 경우 중복된 값들을 정렬하여 그 중 가운데 값을 특징자 값으로 정하였으나, 제안된 알고리즘에서는 중복된 값들을 정렬하여 그 중 공간정보가 가장 작은 값을 특징자 값으로 정하였다. 그리고 코렐로그램을 적용하여 특징자 테이블을 구성하고 이를 이용하여 비교하였다. 제안된 알고리즘은 시뮬레이션을 통해 테스트 하였고 그 결과 기존 알고리즘 보다 더 나은 검색성능을 나타내게 되었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-002525929