메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이석주 (한국기술교육대학교) 민준기 (한국기술교육대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.43 No.3
발행연도
2016.3
수록면
380 - 388 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
그래프 클러스터링은 서로 유사한 특성을 갖는 정점들을 동일한 클러스터로 묶는 기법으로 그래프 데이터를 분석하고 그 특성을 파악하는데 폭넓게 사용된다. 최근 소셜 네트워크 서비스와 월드 와이드 웹, 텔레폰 네트워크 등의 다양한 응용분야에서 크기가 큰 대용량 그래프 데이터가 생성되고 있다. 이에 따라서 대용량 그래프 데이터를 효율적으로 처리하는 클러스터링 기법의 중요성이 증가하고 있다. 본 논문에서는 대용량 그래프 데이터의 클러스터들을 효율적으로 생성하는 클러스터링 알고리즘을 제안한다. 우리의 제안 기법은 그래프 내의 클러스터들 간의 유사도를 Min-Hash를 이용하여 효과적으로 추정하고 계산된 유사도에 따라서 클러스터들을 생성한다. 실세계 데이터를 이용한 실험에서 우리는 본 논문에서 제안하는 기법과 기존 그래프 클러스터링 기법들과 비교하여 제안기법의 효율성을 보였다.

목차

요약
Abstract
1. 서론
2. 배경지식 및 관련연구
3. 그래프 클러스터링 기법
4. 실험 및 성능평가
5. 결론 및 향후 연구 계획
References

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0