메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김재주 (성균관대학교) 한환수 (성균관대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회 컴퓨팅의 실제 논문지 정보과학회 컴퓨팅의 실제 논문지 제22권 제3호
발행연도
2016.3
수록면
127 - 132 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
인공신경망을 압축에 적용하여 더 높은 압축 성능을 보이기 위한 알고리즘들이 몇 가지 연구되어 있다. 그러나 그동안 이러한 알고리즘들은 한정된 계산 능력의 하드웨어를 가지고 있기에 작은 크기의 신경망을 사용할 수밖에 없었으며 적용하는 대상 역시 실제로 사용하기에는 너무 작은 크기의 파일들이었다. 본 논문에서는 GPGPU의 계산능력을 신경망 학습에 이용하여 만든 텍스트 문맥 기반 문자 등장확률 예측기와 함께 허프만 부호화의 성능을 높일 수 있는 변환 방법을 제시한다. 앞먹임 신경망과 GRU회귀 신경망에 대해 실험을 수행하였으며, 회귀 신경망 모델은 앞먹임 신경망에 비해 뛰어난 예측 성공률과 압축률을 보였다.

목차

요약
Abstract
1. 서론
2. 확률 예측기로서의 인공신경망
3. 확률 예측기를 사용한 엔트로피 변환
4. 실험설계
5. 실험결과
6. 결론 및 향후연구
References

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0