메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정나라 (도담시스템스) 송재욱 최호형 (대구대학교) 강현수 (충북대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제20권 제3호
발행연도
2016.3
수록면
621 - 629 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
본 논문은 소아 및 성인의 중이염을 자동 판별할 수 있는 알고리즘을 제안한다. 제안 방법은 중이염 영상과 정상 영상 데이터베이스에서 HoG(histogram of oriented gradient) 기술자를 사용하여 특징을 추출한 다음 SVM(support vector machine) 분류기를 통하여 추출된 특징들을 학습시킨다. 여기서 SVM 입력 벡터의 추출을 위하여 입력영상은 영상크기를 사전에 정의된 일정크기의 영상으로 변환되고 변환된 영상을 16개의 블록과 4개의 셀로 분할하며 9개의 빈을 가진 HoG를 사용한다. 결과적으로 입력 영상에서 576개의 특징을 추출하고 이를 SVM의 학습과 분류에 사용된다. 입력 영상이 학습된 특징들의 모델을 기반으로 SVM 분류기를 통하여 중이염 여부가 판별된다. 실험 결과 제안한 방법은 정확도 90% 이상의 판별 성능을 나타내었다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 제안한 방법
Ⅳ. 실험 및 평가
Ⅴ. 결론
REFERENCES

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-559-002760637