메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jaedong Lee (Sungkyunkwan University) Jee-Hyong Lee (Sungkyunkwan University)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.16 No.1
발행연도
2016.3
수록면
1 - 12 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we propose an approach that efficiently builds regional hazardous weather prediction models based on past weather data. Doing so requires finding the proper weather attributes that strongly affect hazardous weather for each region, and that requires a large number of experiments to build and test models with different attribute combinations for each kind of hazardous weather in each region. Using our proposed method, we reduce the number of experiments needed to find the correct weather attributes. Compared to the traditional method, our method decreases the number of experiments by about 45%, and the average prediction accuracy for all hazardous weather conditions and regions is 79.61%, which can help forecasters predict hazardous weather. The Korea Meteorological Administration currently uses the prediction models given in this paper.

목차

Abstract
1. Introduction
2. Related Work
3. Weather Data, Hazardous Weather, and Region Description
4. Prediction Model Construction with Modified Top-Down Method
5. Experimental Results
References

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-029-002794223