메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Tuvshinkhuu Purevsuren (브이에스코리아) Jeonil Kang (인하대학교) DaeHun Nyang (인하대학교) KyungHee Lee (수원대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제26권 제2호
발행연도
2016.4
수록면
301 - 314 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Juels와 Sudan의 퍼지 볼트 기법은 기법이 갖는 오류 내성 때문에 많은 연구에 사용 되어오고 있다. 그러나 이들의 퍼지 볼트 기법은 그들의 논문에서 영화 애호가 문제를 예를 들었음에도 불구하고, 사람들이 일반적으로 갖는 선호도(preference)의 차이에 대한 고려가 존재하지 않는다. 한편, Nyang과 Lee는 안전하고 성능이 좋은 얼굴인증 시스템을 만들기 위해서, 얼굴 특징이 서로 다른 가중치를 갖도록 얼굴 특징과 퍼지 볼트(vault) 사이에 특별한 연관 구조를 갖는 얼굴 인증 시스템(이른바, 퍼지 얼굴 볼트)을 소개하였다. 그러나 그들의 기법은 일반적인 특징 추출 기법들이 클래스 내부/간 차이를 최적화하려는 특성이 있기 때문에 인증 실패율을 성공적으로 낮추지 못할 것으로 쉽게 예상할 수 있다. 이 논문에서는 퍼지 볼트의 유연성을 제공해주기 위하여 Nyang과 Lee의 퍼지 볼트기반의 얼굴 인증 시스템에서 가중치 아이디어를 다른 방식으로 구현한 버킷(bucket) 구조와 사용자 선호도와 시스템 구현 간 관계를 공식화하는 세 가지 분포 함수에 대해서 소개한다. 또한 이를 바탕으로 선호도 매치메이커(preference matchmaker) 기법을 제안하며, 영화 데이터베이스를 이용하여 이러한 매치메이커의 연산 성능을 확인해본다.

목차

요약
ABSTRACT
Ⅰ. Introduction
Ⅱ. Preliminaries
Ⅲ. Nyang and Lee’s Fuzzy Face Vault
Ⅳ. Our Proposal: Weighted Fuzzy Vault
Ⅴ. Experiments
Ⅵ. Other issues
Ⅶ. Conclusion
References

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-002890563