메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국복식학회 복식 복식 제51권 제2호
발행연도
2001.3
수록면
181 - 192 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Men study the nature in two ways. Scientists and mathematicians inquire a branch of those two ways. Mathematical formulations are the tools and the expressions of their nature. Meanwhile, the other branch, the art, aims for different inquiry. Instead of formulating the nature, the artists create their masterpieces from their ultimate source, the Mother Nature. For thousands of years these two branches have grown together, influencing each others work. Some mathematicians find that formulations are not enough to fully express the beauty of nature. It is believed that such a simple expression, formula, easily omits the careful details of nature. The nature is simply too chaotic to be shaped with a formula. Of those mathematicians, Mandelbrot, one of the first to realize this matter, introduced the world of fractal geometry. Fractals give new possibilities. It allows us not to limit ourselves to linear prospect, rather a whole new view of this chaotic beauty of the nature. A popular practice to understand fractals is in costume design. The artistic characteristic and organization mechanism is applied to costumes, Meanwhile, another practice, rather aggressive, is using computer to create an image of fractals. This image is then used for motives to generate artistic expressions. Computer and paper ironing technique is used for fashion illustration in this research. The works were synthesized and transformed from computer programs. To add more traditional painting touch to this work, paper ironing technique was used. Since the effect of this technique is so random, irregular, and unordered, it corresponds to fractal consideration. This thesis asserts an another prospect to fractal as a structural way of describing nature and fashion illustration, rather than restricting it to only mathematical theory.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-381-000762062