메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Thaileang Sung (Jeonju University) Insoo Hwang (Jeonju University)
저널정보
한국데이터전략학회 Journal of Information Technology Applications & Management Journal of Information Technology Applications & Management Vol.23 No.2
발행연도
2016.6
수록면
11 - 28 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we proposed a dictionary extension and a ternary decomposition technique to improve the effectiveness of Khmer word segmentation. Most word segmentation approaches depend on a dictionary. However, the dictionary being used is not fully reliable and cannot cover all the words of the Khmer language. This causes an issue of unknown words or out-of-vocabulary words. Our approach is to extend the original dictionary to be more reliable with new words. In addition, we use ternary decomposition for the segmentation process. In this research, we also introduced the invisible space of the Khmer Unicode (char\u200B) in order to segment our training corpus. With our segmentation algorithm, based on ternary decomposition and invisible space, we can extract new words from our training text and then input the new words into the dictionary. We used an extended wordlist and a segmentation algorithm regardless of the invisible space to test an unannotated text. Our results remarkably outperformed other approaches. We have achieved 88.8%, 91.8% and 90.6% rates of precision, recall and F-measurement.

목차

Abstract
1. Introduction
2. Khmer Language Overview
3. Research Reviews
4. Proposed Approach
5. Experiment
6. Conclusion
References

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-005-000803074