메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한환경공학회 대한환경공학회지 대한환경공학회지 제37권 제1호
발행연도
2015.1
수록면
1 - 6 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구에서는 데이터 마이닝 기법을 사용하여 혐기성 소화조의 효율을 나타내는 지표인 소화가스 발생량 예측 모델개발을 통해 운영자에게 효율적인 소화조 운영방안을 제시하고자 하였다. 그 결과 오차율 10% 이내의 인공신경망을 적용한 소화가스 발생량 예측 모델을 개발 하였으며, 모델 개발에 사용된 변수를 제시함으로써 소화조 운영에 도움이 될 것으로 사료된다. 한편 탈수 케이크 관리 기법을 개발하는데 사례기반추론(Case based reasoning)의 개념을 적용하였다. 사례기반추론은 새로운 문제가 발생했을 경우 과거의 사례와 가장 유사한 사례를 활용하여 문제를 해결에 활용하는 방법으로, 본 연구에서는 슬러지 처리 공정에 사례기반추론개념을 적용시켜 과거의 운전 data를 통해 최소의 운전변경으로 탈수 케이크 감량화를 제시하는 관리방안을 개발하였다.

목차

등록된 정보가 없습니다.

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-539-001507898