메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정성미 (연세대학교) 권태경 (연세대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제26권 제4호
발행연도
2016.8
수록면
903 - 910 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
터치스크린 기반 스마트 기기가 널리 보급 되면서 모바일 환경을 위한 주요 인증 메커니즘으로 그래픽 패스워드 기법중 하나인 패턴 락 시스템이 등장했다. 사용자가 잠금 해제를 위하여 패턴 락을 사용한 후의 남아있는 패턴 모양의 흔적은 스머지 공격에 취약하다. 이러한 스머지 공격에 대응하기 위하여 TinyLock을 포함한 다양한 패턴 락이 제안되었다. 본 논문에서는 스머지 공격이 발생할 수 있는 환경에서 획득한 스머지 패턴 이미지를 이용하여 기계 학습을 통한 자동화된 스머지 공격의 유효성에 대하여 실험하고 안드로이드 패턴 락과 TinyLock의 안전성에 대하여 비교 분석하였다. 자동화된 스머지 공격에서 높은 공격 성공률을 보였으며 기존에 많이 사용되고 있는 안드로이드 패턴 락이 TinyLock보다 더 안전하지 않음을 검증하였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 기계 학습 기반의 스머지 공격
Ⅳ. 연구 방법
Ⅴ. 실험 결과
Ⅵ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-004-001134575