메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이완곤 (숭실대학교) 이남기 (숭실대학교) 전명중 (숭실대학교) 박영택 (숭실대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.43 No.9
발행연도
2016.9
수록면
963 - 973 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
대용량 미디어 온톨로지를 이용하여 의미 있는 지능형 서비스를 제공하기 위해 기존의 Axiom 추론뿐만 아니라 다양한 추론을 활용하는 지식 확장이 요구되고 있다. 특히 시공간 정보는 인공지능 응용분야에서 중요하게 활용될 수 있고, 시공간 정보의 표현과 추론에 대한 중요도는 지속적으로 증가하고 있다. 따라서 본 논문에서는 공간 정보를 추론에 활용하기 위해서 공공 주소체계에 대한 LOD를 대용량 미디어 온톨로지에 추가하고, 이러한 대용량 데이터 처리를 위해 인메모리 기반의 분산 처리 프레임워크를 활용하는 공간 추론을 포함하는 RDFS 추론 시스템을 제안한다. 또한 추론을 통해 확장된 데이터를 포함하는 대용량 온톨로지 데이터를 대상으로 하는 분산 병렬 시공간 SPARQL 질의 처리 방법에 대해서 설명한다. 제안하는 시스템의 성능을 측정하기 온톨로지 추론과 질의 처리 벤치 마킹을 위한 LUBM과 BSBM 데이터셋을 대상으로 실험을 진행했다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. RDFS와 공간 추론
4. 시공간 분산 SPARQL 질의 처리 엔진
4. 실험 및 결과
5. 결론
References

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0