메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제2권 제1호
발행연도
1998.8
수록면
24 - 33 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Independent Component analysis (ICA) is a new statistical method for extracting statistically independent components from their linear instantaneous mixtures which are generated by an unknown linear generative model. The recognition model is learned in unsupervised manner so that the recovered signals by the recognition model become the possibly scaled estimates of original source signals. This paper addresses the neural learning approach to ICA. As recognition models a linear feedforward network and a linear feedback network are considered. Associated learning algorithms for both networks are derived from maximum likelihood and information-theoretic approaches, using natural Riemannian gradient [1]. Theoretical results are confirmed by extensive computer simulations.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-056-001401704