메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제13권 제4호
발행연도
2009.12
수록면
43 - 46 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
음성신호는 화자에 대한 고유한 정보와 주변의 음향환경에 대한 정보는 물론 감정과 피로도 등 다양한 정보가 포함되어 있다. 이에 음성신호를 이용한 연구분야에서 감정 상태를 파악하기 위한 연구가 지속되어 왔다. 이에 본 논문에서는 화자의 감정을 인식하기 위해 ETSI의 3GPP2 표준코덱인 Selectable Mode Vocoder(SMV)를 분석한다. 이를 기반으로 감정 인식에 효과적인 특징들을 제안한다. 이후 선정된 특징 벡터를 이용하여 Gaussian Mixture Model(GMM) 기반의 감정 인식 알고리즘을 개발하고 Mixture component 개수를 변화시키면서 성능을 검증한다.

목차

등록된 정보가 없습니다.

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-056-001395396