메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
오하영 (아주대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제26권 제5호
발행연도
2016.10
수록면
1,235 - 1,241 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
스마트 폰에서 활용할 수 있는 다양한 앱 (Apps)들의 개수가 기하급수적으로 증가함에 따라 개인 맞춤형 앱들을 추천해주는 시스템이 각광받고 있다. 하지만, 다양한 목적으로 악성 앱 (Malware)을 제작하여 구글 플레이(GooglePlay) 사이트에 등록 후 배포하는 경우가 동시에 증가함에 따라 사용자들은 만족도 하강의 단순 피해부터 개인정보 노출 및 금전 탈취 등 심각한 수준의 많은 피해까지 겪고 있다. 또한, 소셜 네트워크가 발전함에 따라 물리적인한 사용자가 많은 거짓 계정들을 만들어서 구글 플레이 사이트의 각 앱의 평점 (rating)들을 조작하는 시빌 공격(Sybil)도 존재할 수 있다. 이때까지 악성 앱과 시빌 공격 연구는 독립적으로 진행되어 왔다. 하지만 실시간으로 발전하고 있는 지능화된 공격 종류들을 고려했을 때 악성 앱 제작자가 구글 플레이 사이트에 노출 된 평점까지 조작 후 인지도를 높여서 결국 악성 앱을 다운받도록 유도하는 지능화된 공격의 유무를 판단하는 것이 중요하다. 따라서, 본 논문에서는 구글 플레이어 사이트를 직접 크롤링하고 시빌 공격과 악성 앱의 상관관계를 실험적으로 밝힌다. 실험결과, 구글플레이어 사이트에서는 아직 시빌과 악성 앱의 상관관계가 낮음을 알 수 있었다. 이는 악성 앱 배포자가 인지도 및 평점까지 다수 조작하여 많은 사람들에게 노출되면 다양한 Anti-Virus (AV) 벤더들에게 오히려 더 빨리 탐지되어 목적을 달성할 수 없기 때문에 이를 고려하지 않았거나, 악성 앱 배포자가 악성 앱을 만들고 배포하는 것에만 초점을 두고 사이트 인지도 및 평점 조작까지는 아직 동시에 고려하지 않음으로 해석될 수 있다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 시스템 모델
Ⅲ. 제안하는 기법
Ⅳ. 성능평가
Ⅴ. 결론
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-004-001642812