메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Kyunghwan Kim (한성대학교) Sung Hoon Jung (한성대학교)
저널정보
한국디지털콘텐츠학회 디지털콘텐츠학회논문지 디지털콘텐츠학회논문지 제17권 제6호
발행연도
2016.12
수록면
449 - 459 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 기존의 인공신경망을 이용한 자동작곡 방법에서 발생한 세 가지 문제점을 개선하는 새로운 방법을 제안한다. 첫 번째 문제는 인공신경망이 출력한 곡의 박자를 음악이론에 맞도록 후처리 하는 것에서 모든 경우를 처리하지 못하여 발행한 문제이다. 두 번째 문제는 음표를 학습하는 인공신경망에 음표와 구분되는 큰 값으로 쉼표를 같이 학습하다보니 음표공간이 왜곡되어 발생하는 문제이다. 마지막으로 문제는 새로운 곡 작곡 시 사용자가 작곡해서 넣어준 초기 멜로디와 박자가 인공신경망이 출력하는 나머지 멜로디와 박자와 어울리지 못하여 발생하는 문제이다. 본 논문에서는 이러한 문제를 해결하기 위하여 개선된 박자 후처리 알고리즘과 초기 멜로디 처리 방법을 제안하였으며 쉼표용 인공신경망을 새로이 도입하였다. 실험결과 새로 제안한 방법이 기존의 방법에서 발생한 세 가지 문제점을 모두 해결하는 것으로 판명되었다.

목차

Abstract
요약
1. Introduction
2. Existing automatic composition method
3. Problems and solutions of existing automatic composition
4. Experimental results
5. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-004-001982548