메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Shin Yamaguchi (Osaka Prefecture University) Etsuko Kusukawa (Osaka Prefecture University)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.16 No.1
발행연도
2017.3
수록면
1 - 21 (21page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper discusses a reverse supply chain (RSC) which consists of the process flows from procurement of used products collected from a market, through remanufacturing products from the used products, to sales of the products in a market. In general, it is conceivable for the RSC to face the uncertainty in quality of used products collected from a market. Inspection is one of efficient methods to deal with the problem regarding quality of used products. However, there is a trade-off between inspection cost and inspection accuracy. This paper focuses on the following five types of inspection: (1) 100% inspection, (2) sampling inspection, (3) sampling inspection with screening of rejected lots, (4) sampling inspection with screening of acceptable lots, and (5) no inspection, and determines the optimal operation consisting of the optimal number of procured used products and the optimal inspection policy. Numerical analysis clarifies not only how changes of conditions of the RSC affect the manufacturer’s optimal operation but also features of each inspection type. In addition, from the results of numerical analysis, this paper shows the usability to add the proposed inspection in this paper, the sampling inspection with screening of acceptable lots, to choices of inspection type.

목차

ABSTRACT
1. INTRODUCTION
2. NOTATION
3. MODEL DESCRIPTIONS
4. THE MANUFACTURER’S EXPECTED TOTAL PROFIT IN EACH INSPECTION TYPE (IT)
5. A PROCEDURE TO DETERMINE OPTIMAL OPERATION
6. NUMERICAL ANALYSIS
7. CONCLUSION
REFERENCES

참고문헌 (32)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-530-002373386