메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
구교권 (포항공과대학교) 이상준 (포항공과대학교) 김상우 (포항공과대학교)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제23권 제6호
발행연도
2017.6
수록면
411 - 415 (5page)
DOI
10.5302/J.ICROS.2017.17.0023

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In the steel industry, billet numbers are typically identified before the rolling process because of customers’ different requirements. To identify the billet number, computer vision systems are widely used, because the billet number is marked on the front of the billet by a specialized marking machine at a high temperature. Conventional algorithms, such as rule-based and machine-learning-based algorithms, require features of objects. The features are designed by the user, and they significantly influence the accuracy of the algorithm. To address this problem, deep learning methods have recently been researched. In image processing, the convolutional neural network (CNN) is widely used among the deep learning methods. We propose an end-to-end algorithm using CNN to detect and recognize the billet numbers used in the steel industry. The proposed algorithm consists of four convolutional layers, three pooling layers, two fully connected layers, and a softmax layer. The output of the CNN model consists of the probabilistic values for 18 classes, which include 17 character classes and 1 background class. By using the output of the CNN model, we obtain a character confidence matrix, and by using the score function, the optimal position of the billet number is detected, and the optimal character is classified. Furthermore, we exploit the fact that the billet number consists of four columns and two rows. The experimental results show that the billet number recognition accuracy is maximized as 95.1% in 20 epochs. Using the proposed algorithm will help to increase operation efficiency in the steel industry.

목차

Abstract
I. 서론
II. CNN 학습
III. 빌렛 번호 인식 알고리즘
V. 실험 결과
VI. 결론
REFERENCES

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-000895330