메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sunwoong Kim (Seoul National University) Ji Hun Jang (Inha University) Hyuk-Jae Lee (Seoul National University) Chae Eun Rhee (Inha University)
저널정보
대한전자공학회 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE Journal of Semiconductor Technology and Science Vol.17 No.3
발행연도
2017.6
수록면
446 - 457 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In order to reduce the size of frame memory or bus bandwidth, frame memory compression (FMC) recompresses reconstructed or reference frames of video codecs. This paper proposes a novel FMC design based on discrete wavelet transform (DWT) - set partitioning in hierarchical trees (SPIHT), which supports fine-scalable throughput and is area-efficient. In the proposed design, multi-cores with small block sizes are used in parallel instead of a single core with a large block size. In addition, an appropriate pipelining schedule is proposed. Compared to the previous design, the proposed design achieves the processing speed which is closer to the target system speed, and therefore it is more efficient in hardware utilization. In addition, a scheme in which two passes of SPIHT are merged into one pass called merged refinement pass (MRP) is proposed. As the number of shifters decreases and the bit-width of remained shifters is reduced, the size of SPIHT hardware significantly decreases. The proposed FMC encoder and decoder designs achieve the throughputs of 4,448 and 4,000 Mpixels/s, respectively, and their gate counts are 76.5K and 107.8K. When the proposed design is applied to high efficiency video codec (HEVC), it achieves 1.96% lower average BDBR and 0.05 ㏈ higher average BDPSNR than the previous FMC design.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. DWT-SPIHT
Ⅲ. THE PROPOSED SCHEMES FOR FINESCALABLE SPIHT HARDWARE DESIGN
Ⅳ. INTEGRATION WITH HEVC ENCODER
Ⅴ. EXPERIMENTAL RESULTS
Ⅵ. CONCLUSIONS
REFERENCES

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-569-001034067